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Abstract—The copper removal process (CRP) aims to reduce
the copper ion concentration in zinc sulphate solution to a specific
range by zinc addition. The satisfaction of production constraints
and minimization of zinc consumption are vital but difficult to
achieve. In this paper, the dynamic optimization for CRP is
conducted for optimal zinc control trajectory design considering
constraints at least cost. First, a dynamic optimization problem
with both state and control constraints is constructed for CRP.
Then, a constrained dynamic optimization method is proposed,
where a wavelet-based control parameterization method and
a smooth penalty method are adopted. Specially, a hybrid
optimization strategy is proposed to achieve a robust and efficient
optimization performance. Numerical experiments are provided
to illustrate the effectiveness of the proposed method. Results
show that the proposed method can produce not only the optimal
control trajectory with a qualified outlet ion concentration, but
also the less zinc consumption.

Index Terms—Copper removal, dynamic optimization, control
vector parameterization, inequality constraints, state transition
algorithm.

I. INTRODUCTION

PURIFICATION of zinc sulfate solution is indispensable
in zinc hydrometallurgy, since the existence of impurity

ions, such as copper, cobalt and nickel, may cause the prob-
lems of corrosion, product purity and work hygiene [1]. As
the first stage of solution purification, copper removal process
(CRP) is of considerable importance, which serves to reduce
the copper ion concentration to a precise range by zinc addition
for facilitating the downstream cobalt removal process [2]. It
is difficult for operators to make appropriate operation to meet
the strict requirements of process output, due to the intricate
reaction mechanism and the off-line ion concentration mea-
surement. An extremely conservative strategy commonly used
in practice usually leads to not only excessive zinc powder
consumption but also insufficient outlet copper ions. In order
to find an optimal control trajectory with less zinc consumption
within a qualified ion concentration, the dynamic optimization
of CRP was constructed (see [3] and the references therein).
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The optimization problem arising in CRP can be constructed
to a dynamic optimization problem (DOP), whose objective
is to find a time-varying control trajectory corresponding to
reducing production costs for a given process time. More
significantly, the optimization is performed in the presence
of various production constraints, i.e., the intrinsic constraints
imposed by the dynamic system differential equations, the
input constraints dictated by equipment requirements, and
the state-dependent constraints stemming from safety and
operability consideration [4].

It is still a challenge to obtain a high-quality solution of
DOPs efficiently, especially when the problem formulation
contains continuous inequality constraints, for three primary
reasons. Firstly, most constrained DOPs are much too complex
to be soluble analytically [5], and therefore they can only be
solved by numerical method with additional parameterization
operation. Secondly, the state trajectory subjects to constraints
at every time point, and thus an uncountable number of
point constraints need to be satisfied simultaneously. Thirdly,
even for the problem without constraints, the solution quality
obtained by numerical method is not always satisfactory,
because such optimization problems involving dynamic sys-
tems arising in industrial process are usually highly nonlinear,
multidimensional and multimodal [6].

Control vector parameterization (CVP) [7] method is widely
used in numerical method to reduce the original infinite-
dimensional problem to a finite-dimensional non-linear pro-
gramming (NLP) problem. It only approximates control tra-
jectory using a finite number of decision variables, commonly
with a uniform piecewise-constant approximation scheme.
However, an uniform parameterization grid has a dilemma
that the solution quality is strongly dependent on the pa-
rameterization resolution of the control trajectory. The higher
resolution brings more accurate approximation while takes
significantly higher computational cost [8]. Moreover, high-
frequency control due to the high resolution will make it
difficult and expensive to implement in practice. In order
to make a tradeoff among approximation, optimization and
operation, a wavelet-based CVP method based on adaptive
refinement strategy suggested in [9] is adopted in this paper
to reflect the optimal control trajectory structure with less
decision parameters.

To deal with the continuous inequality constraint, some
approaches have been studied in the framework of CVP
method. One traditional approach introduces a slack variable
to transform original problem with a state inequality con-
straint into an unconstrained one of increased dimension [10].
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However, it can only be applied to problems with special
structures. Another method, called exact penalty method, is
more versatile and has been successfully applied to a wide
variety of practical problems. It involves appending the con-
straint violation to the cost function as a penalty term and then
constructing an unconstrained penalty problem. Since the exact
penalty functions are nondifferentiable, a smooth technique is
introduced to approximate the penalty operator for facilitating
the subsequent optimization [11].

After parameterization and constraint handling, the exis-
tence of suboptimal local minima is still a troublesome prob-
lem when solving DOPs [12]. The characteristics of highly
nonlinear, multidimensional and multimodal make gradient-
based optimization methods struggle to handle [13], which
have good convergence in local search. To address this issue, a
stochastic global optimization algorithm named state transition
algorithm (STA) [14] is introduced, and its excellent global
performance for solving unconstrained dynamic optimization
problems has been reported. Although STA converges fast in
the initial stage, its convergence speed decreases considerably
in later iterations when reaching a near-optimal solution. In
this paper, it is desirable to investigate a hybrid optimization
method which combines the global search ability of STA and
the local search ability of gradient-based method.

In this paper, we intend to find a zinc addition trajectory for
a given operating time such that the outlet copper ion concen-
tration can keep in a desirable range at the most economical
cost. The main contributions of this paper are summarized as
follows. (1) A dynamic optimization problem is constructed
for CRP to find the optimal control trajectory of zinc addition
for a given time, with considerations of production constraints.
(2) A constrained dynamic optimization method is proposed
to solve the DOPs with continuous state constraints, based on
the wavelet-based CVP method and smooth penalty method.
Specially, a hybrid optimization strategy combined STA and
gradient-based method is investigated to obtain a robust and
efficient optimization performance. (3) The proposed method
is successfully applied to solve the constrained DOP arising in
CRP. The dynamic optimization framework of CRP is shown
in Fig.1.
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Fig. 1: The dynamic optimization of CRP

The remainder of this paper is organized as follows. In
Section 2, after process analysis and modeling, a dynamic opti-
mization problem with inequality constraints is constructed for
CRP. In Section 3, a dynamic optimization method is proposed
for solving constrained DOPs. Section 4 demonstrates the
effectiveness of the proposed method. Finally, the conclusion
is drawn in Section 5.
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Fig. 2: Schematic diagram of the CRP

II. DYNAMIC OPTIMIZATION PROBLEM OF CRP

A. Process Description and Modeling

In CRP, the separation of copper from the leaching ZnSO4

solution is carried out with two cascaded reactors, shown as
Fig. 2. It is observed that the leaching solution is fed into
two reactors continuously and then sent to a thickener for
solid-liquid separation. The first reactor acts as main reactor
responsible for the deposition of most of copper ions, while
the second reactor serves as auxiliary for fine tuning the outlet
concentration. Zinc serves as the cementation agent due to its
strong reductive ability. A set of reactions take place inside
two cascaded reactors, and the chemical reactions are given
as follows:

CuSO4 + Zn → ZnSO4 +Cu ↓ (1)
CuSO4 +Cu + H2O → Cu2O ↓ +H2SO4 (2)

The majority of copper ions react with zinc and precipitate as
metallic copper. A portion of the deposited metallic copper
further undergo comproportionation with ionic copper and
form cuprous oxide precipitate.

In practice, the reactor is a typical continuously stirred tank
reactor (CSTR). On the basis of the principle of material and
mass balance, the dynamic model of CRP can be described
by the following differential equations:

V ĊCu2+,1 = QC in
Cu2+,1−(Q+ q)CCu2+,1−V rCu2+,1, (3)

V ĊCu2+,2 = (Q+ q)C in
Cu2+,2 (4)

− (Q+ q)CCu2+,2−V rCu2+,2,

where C in
Cu2+,i, i = 1, 2 and CCu2+,i, i = 1, 2 are the inlet and

outlet concentrations of copper ions, respectively. ĊCu2+,i, i =
1, 2 is the respective change rate of copper ions concentration
in ith reactor. V is the active volume of reactor. Q and q are
the inlet solution flow rate and returned underflow rate. In
particular, based on the kinetic modeling of the competitive-
consecutive reaction, the sedimentation rate of copper ions of
the ith reactor in CRP, rCu2+,i, i = 1, 2, can be modeled by
the following equations:

rCu2+,1 = (k1GZn,1 + k2)V
−1CCu2+,1, (5)

rCu2+,2 = (k1GZn,2 + k3)V
−1CCu2+,2, (6)

where ki, i = 1, 2, 3 denotes kinetic parameters; GZn,i, i = 1, 2
denotes the zinc powder addition rate of the ith reactor.
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For the sake of simplicity, the dynamic model of the CRP
can be rewritten as:

ẋ = A1x+A2x
in + ϕ(x,u) = F (u(t),x(t), t), (7)

A1 =

[
−V −1(Q+ q) 0

0 −V −1(Q+ q)

]
,

A2 =

[
V −1Q 0

0 V −1(Q+ q)

]
,

ϕ(x,u) =

[
−V −1(k1u1 + k2)x1)
−V −1(k1u1 + k3)x2)

]
,

where we denote zinc powder addition rate as control vector
u = [GZn,1, GZn,2], the outlet copper ions concentration as
state vector x = [CCu2+,1, CCu2+,2] and the inlet copper ions
concentration as xin = [C in

Cu2+,1, C
in
Cu2+,2]. Note that, the inlet

reactant concentration of the #2 reactor is the outlet reactant
concentration of the #1 reactor, namely C in

Cu2+,2 = CCu2+,1.

B. Production Constraints

1) Input constraints: The addition rates of zinc powder
are the input variables of dynamic system in CRP. Here,
we consider the input constraints which imposed by actuator
limitations:

umin
i ≤ GZn,i = ui(t) ≤ umax

i , i = 1, 2, (8)

where umin
i and umax

i are the allowed minimum and maximum
rate of zinc powder to be added to the ith reactor.

2) Production constraints: For facilitating further down-
stream processing, outlet copper ion concentration of CRP
needs to be reduced to a certain range precisely. Therefore,
the state constraint of outlet copper ion concentration of #2
reactor CCu2+,2 must be satisfied as follow:

Cmin ≤ CCu2+,2 = x2(t) ≤ Cmax, (9)

where Cmin and Cmax are the lower and upper bound.
3) Stability constraints: In copper removal process, the

separation of copper is carried out with two cascaded reactors
gradually. Most of copper ions are precipitated in the first
reactor, and the second reactor serves as auxiliary for fine
tuning. For better operation and stable production, copper
removal rate RCu2+,1 of the #1 reactor (main reactor) should
also meet the following constraint:

Rmin ≤ RCu2+,1 =
xin
1 − x1(t)

xin
1

≤ Rmax. (10)

where Rmin and Rmax are the lower and upper bound, xin
1

denotes the inlet copper ions concentration of #1 reactor, so
as to avoid the phenomenon of overreaction or insufficient
reaction in the main reactor.

After three months of process observation and data collec-
tion, the process characteristic of the copper removal process
can be shown in Table I.

TABLE I: Operating conditions for CRP (over 90 days)

Parameter Unit Value

Flow rate of leaching ZnSO4 solution, Q m3/h 150-250
Flow rate of underflow, q m3/h 10-22
Solution volume, V m3 98-102
Inlet copper ion concentration, xin

1 g/L 1.1-2.1
Desired outlet copper ion concentration, x2 g/L 0.2-0.4

C. Dynamic Optimization Problem of CRP

After process analysis and modeling, a dynamic optimiza-
tion problem of copper removal process can be described. The
objective is to minimize the zinc addition consumption during
the given time. The control variables are the feed rates of zinc
addition in two stirred reactors. Since the reactions aim to
precipitate the impurity copper, state variable path constraints
must be imposed on the outlet copper ion concentration to
keep it within a certain range throughout the entire process.
Moreover, for better operation and stable production, the
percentage of the removed copper of the main reactor should
also meet the path constraint.

In summary, the dynamic optimization problem with con-
tinuous inequality constraints of CRP can be formulated as
follow:

min
u(t)

J(u(t)) =

∫ tf

t0

(u1(t) + u2(t))dt, (11a)

s.t. ẋ = F (u(t),x(t), t) (11b)
x(t0) = [x1(t0), x2(t0)] (11c)
x2(t)− Cmax ≤ 0 (11d)

Cmin − x2(t) ≤ 0 (11e)

(xin
1 − x1(t))−Rmax · xin

1 ≤ 0 (11f)

Rmin · xin
1 − (xin

1 − x1(t)) ≤ 0 (11g)

umin
i ≤ ui(t) ≤ umax

i , i = 1, 2 (11h)
t ∈ [t0, tf ], (11i)

where F is the differential algebraic equation (DAE) constraint
(7), describing the nonlinear dynamic process, u(t) denotes
the control variable and x(t) is the state variable, x(t0) is
the initial state of the dynamic system at time t0, and tf is
the final time, the objective function (11a) denotes the zinc
addition consumption. The inequality path constraints (11d),
(11e), (11f) and (11g), namely production constraints (9) and
(10), can be unified as follow:

gi(x(t)) ≤ 0, i = 1, 2, 3, 4. (12)

The optimization problem of CRP is a typical DOP with
high nonlinearity, multidimensional, multimodal nature. Solv-
ing such kind of problem efficiently and accurately remains
an issue, especially with the presence of constraints on both
state and control. In the next section, a constrained dynamic
optimization method is proposed to solve the DOPs with
continuous inequality constraints.
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Fig. 3: Flow chart of the proposed method

III. PROPOSED CONSTRAINED DYNAMIC OPTIMIZATION
METHOD

The proposed constrained dynamic optimization approach
consists of three essential parts. Firstly, a wavelet-based CVP
method is investigated to reduce the original problem to a
finite-dimensional NLP problem. Secondly, a smooth penalty
function method is suggested to address the continuous equal-
ity constraints. Thirdly, a hybrid optimization strategy based
on STA is proposed to solve the resulting unconstrained NLP
problem robustly and efficiently. The whole framework of the
proposed constrained dynamic optimization method is shown
in Fig. 3.

A. Wavelet-based Control Vector Parameterization
With a prescribed parameterization scheme, usually an

uniform piecewise-constant one, the original DOP can be
approximated by a finite-dimensional NLP problem, and then
solved by optimization algorithm. However, parameterizing
the control variable uniformly always creates a serious flaw: a
coarse resolution always leads to a poor approximation, while
a fine resolution always brings over-parameterization, which
puts a great challenge not only in the subsequent optimization
but also in the implementation. Focus on above issues, a
wavelet-based CVP suggested in [9] is adopted to generate
an non-uniform parameterization scheme, which can assign
appropriate resolution locally.

The wavelet-based CVP begins with a rough uniform pa-
rameterization scheme Ω0. Applying this scheme, the control
time horizon will be partitioned by a series of time knot tp, p =
0, ..., N , where N ≥ 1 is the number of the subintervals, with
the knot points satisfying t0 < ... < tp < ... < tN = tf .
Then, the control trajectory over the entire time span can be
approximated as follows:

u(t) ≈ ũ(t) =
N∑

p=1

δp(t)ξp, t ∈ [t0, tf ],

δp(t) =

{
1, t ∈ [tp−1, tp]
0 , else

, p = 0, ..., N,

where [tp−1, tp] is the pth control subinterval and ξp is the
constant control value defined on the pth subinterval. So far,
an optimal parameter selection problem has been yield, where
the control values ξξξ = [ξ1, ξ2, ..., ξN ] are the decision variables
for the optimization.

As the optimal solution ξξξ∗ under coarse parameterization
grid Ω0 is obtained, a wavelet-based refinement of time grid
turns on. During the refinement process, the control trajectory
ũ(t) denoted by ξξξ∗ is treated as a signal varying with time.
The wavelet coefficients dj,k of ũ(t) can be obtained through
the fast wavelet transformation [15] with Haar basis. Here, j
denotes the scale which responds to the level of resolution, and
k denotes the translation index. Note that, small coefficient,
i.e. |dj,k| ≤ ϵd, implies that it only leads to a small change
in the approximated ũ(t), and thus the grid point here can be
deleted for the subsequent optimization. On the other hand,
large wavelet coefficient, i.e. |dj,k| > ϵd, means that a grid
point insertion should be carried out here on a higher scale
to approximate the strong variation. Here, the threshold ϵd is
a user-specified parameter depending on the range of control
values.

The main idea of this refinement strategy is to insert and
delete the control grid point iteratively, by performing wavelet
analysis on the previous generation’s optimal solution. An
example is shown in Fig. 4 to illustrate the wavelet-based grid
refinement process. It can be seen that the lth optimal solution
ξ∗l with a rough grid Ωl is analyzed, the grid point with small
wavelet coefficient has been delete (marked by red “×”), and
four grid point (marked by red “ + ”) has been inserted in
scale j = 3. Thus a refined grid Ωl+1 is obtained for (l+1)th
generation optimization.
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Fig. 4: Illustration of wavelet-based adaptive refinement

Based on the wavelet-based CVP method, the original DOP
is approximated by a sequence of optimal parameter selection
problems with continuous state inequality constraints. In next
section, a smooth penalty method is adopted to handle the
continuous constraints.

B. Smooth Penalty Method

The exact penalty function methods have been widely used
for solving constrained optimization problems. After control
parameterization, by appending the constraint violations to the
cost function through a classic l1 penalty function, a modified
cost function is yield:

J1(ξξξ) = J(ξξξ) + ρ

∫ tf

t0

m∑
i=1

max{gi(x(t)), 0}dt (13)
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where m is the number of the constraints, ρ > 0 is a penalty
parameter, control values ξξξ = [ξ1, ξ2, ..., ξN ] are the decision
variables. However, it is noted that the penalty function max{·,
0} is not differentiable at boundary point x where gi(x) = 0,
which makes the gradient-based optimization struggle to han-
dle. In order to address this issue, a smooth function [11]
is introduced to approximate the non-smooth max penalty
function:

S(y, α) =
1

2

[√
y2 + 4α2 + y

]
(14)

where y = gi(x(t)), and α is a small positive number called
smoothing parameter. The approximation property is shown in
Fig. 5 and described as following formulas:

lim
α→0+

S(y, α) = max{y, 0}, (15)

0 < S(y, α)−max{y, 0} ≤ α. (16)
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Fig. 5: The approximation property of S(y, α)

From Fig. 5, it is obvious that there exists a width-varying
gap between S(y, α) and max{y, 0}, and the maximum dif-
ference occurs at y = 0, where constraint is active.

So far, an unconstrained smooth penalty problem has been
yield as follow:

J2(ξξξ) = J(ξξξ) + ρ

∫ tf

t0

m∑
i=1

S{gi(x(t)), α)}dt. (17)

The smoothing factor α plays a critical role to adjust the
approximation level. In order to obtain satisfied smoothing
effect, the smoothing factor α needs to be large, while for
pursuing an exact approximation, α should be set as small
as possible. In other word, it facilitates the optimization at
the expense of high approximate accuracy. In order to balance
approximation accuracy and smoothness gradually, α is tend to
be small and ρ is tend to be quite large as the iterations goes by.
For sake of computational efficiency, α and ρ will be changed
at the same time in next iteration optimization as α∗ = dα
and ρ∗ = ρ/d, where 0 < d < 1 is a specified decrease factor.
Note that minimizing smooth penalty problem (17) will force
the constraint violation to be small enough as ρ → ∞, and
an approximate optimal solution of original constrained NLP
problem can be obtained with sufficient accuracy as α → 0.

After parameterization and constraint handling, a sequence
of unconstrained NLP problems are yield. In next section,

a hybrid optimization strategy is proposed to solve above
problems effectively and efficiently.

C. Hybrid Gradient State Transition Algorithm

1) Basic STA: STA is a global stochastic optimization
algorithm, which has already exhibited excellent global search
ability for solving various multimodal problems. Therefore,
STA has potential advantages to solve above non-convex NLP
problems. In STA, a solution to an optimization problem is
considered as a state, and the update of solutions can be treated
as state transition. As generation goes by, the solution will be
transferred to the optimal state, by its special transformation
operators, such as rotation, translation, expansion and axesion.
A unified framework for state transformation can be described
as follow: {

xk+1 = Akxk +Bkuk

yk+1 = f(xk+1)
,

where xk ∈ ℜn stands for an n-dimensional solution; uk

is a function of xk and historical solutions; Ak and Bk

are state transition matrices, which can denote different state
transformation operators; f(·) is the fitness function, and yk+1

is the fitness of state xk+1.
2) HGSTA: Although STA has shown excellent global

search performance, one of the interesting empirical obser-
vations we often observe is that the incremental improvement
of such meta-heuristic optimization methods decreases rapidly
as the iterations goes by. In the other words, a significantly
increased computation can only bring minor improvements of
objective function as current optima near the global optima.
Meanwhile, it is known that gradient-based algorithms can find
a local optima rapidly and accurately, owning to the utilization
of gradient direction. Therefore, in order to accelerate the con-
vergence speed in the local search phase, a hybrid optimization
algorithm, named HGSTA, which combines STA and gradient-
based method is proposed.

HGSTA is a hybrid optimization algorithm. In the first
phase, STA is used to be responsible for the global search,
aiming to provide a good starting point for next phase. The sec-
ond phase is fine-tuning, a gradient-based method is adopted to
enhance the local search ability. There are various gradient-
based algorithms and here we use the sequential quadratic
programming (SQP) method for its better behavior [16].

From Fig. 3, it is worth noting that, as the control grid has
been fixed in each generation, STA solves the unconstrained
NLP problem with initial smooth and penalty factors to locate
the optimal solution roughly. Once a near-optimal solution has
been obtained, a more accurate global optima can be found
based on SQP and the iterative smoothing and penalty.

D. Proposed Constrained Dynamic Optimization Method Pro-
cedure

The pseudocode of the proposed constrained dynamic op-
timization method can be seen in Algorithm 1. It can be
seen that solution accuracy can be improved by not only the
iterative penalty function approximation process in the inner
loop, but also the iterative grid refinement process in the outer
loop. Therefore, the robustness, efficiency and precision can
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Algorithm 1 Pseudocode of the proposed constrained dynamic
optimization method

1: Initialize refinement iteration l = 0, j = j0, N = 2j0 ;
2: Obtain the initial rough uniform parameterization gird Ω0;
3: Initialize N -dimensional solution ξξξ0 randomly;
4: while Stopping criterion I is not met do
5: Set smooth penalty iteration n = 0, α = α0, ρ = ρ0;
6: Transform constrained DOP to constrained NLP prob-

lem under gird Ωl;
7: Transform constrained NLP problem to unconstrained

one (17) by smooth penalty function;
8: Obtain the optimal solution of (17) by STA;
9: while Stopping criterion II is not met do

10: Obtain the optimal solution ξξξ∗l of (17) by SQP;
11: Let α = dα, ρ = ρ/d;
12: Transform constrained NLP problem to uncon-

strained one (17) by smooth penalty function;
13: end while
14: Let l = l + 1, j = j + 1;
15: Obtain the new grid Ωl in scale j with ξξξ∗l−1;
16: end while

be balanced by iteration. Note that all iterative optimization
of refinement are warm-starting.

For stopping criterion I, it will be triggered by any of the
following two conditions (18) and (19) which are formulated
as follows: ∣∣∣∣Jl − Jl−1

Jl−1

∣∣∣∣ ≤ εs, (18)

j > j, (19)

where εs is a stopping tolerance, l denotes the refinement
iterations, j is the the maximum scale. Equation (18) denotes
little relative improvement of J . It implies that a higher
resolution of the control profile can not bring a corresponding
improvement of approximation accuracy, and thus it’s time to
shut down the iterative refinement. The maximum scale j aims
to limit the minimum operation time of each control value,
because high-frequency control stemming from high solution
will make it difficult and expensive to implement in practice.

For stopping criterion II, two conditions (20) and (21) have
been taken into consideration, which are designed as follows:∣∣∣∣Jn − Jn−1

Jn−1

∣∣∣∣ ≤ εs, (20)

n > n, (21)

where n denotes the smooth penalty iterations, n is the maxi-
mum smooth penalty iteration. The little relative improvement
of J between two iterations indicates that the smooth penalty
function fits the original constrained optimization problem
well. The maximum smooth penalty iteration n is designed
to avoid sinking into the iterations for too long.

IV. EXPERIMENTS AND DISCUSSION

In this section, in order to illustrate the efficiency of the
proposed constrained dynamic optimization method, two cases

of experiments are conducted: 1) a typical constrained DOP
named Jacobson&Lele problem; and 2) the constrained DOP
arising from CRP. All calculations are carried on MATLAB
(Version R2017b) software platform using 3.4GHz Intel i7
PC with 8G RAM. Initial parameters, like α0, ρ0 and d are
selected as 2.5 × 10−5, 1 and 0.1. Termination parameters,
like εs and n are set to 1 × 10−5 and 4. The initial and
maximum scale are user-specified depending on problem.
Parameter settings in STA can be found in [14].

A. Case I: Typical Industrial Problem
The Jacobson&Lele (J&L) problem is a typical industrial

DOP proposed in [10]. This problem has a path state con-
straints, and its mathematics model can be described as follow:

min
u(t)

J = x3(tf )

s.t. ẋ1 = x2

ẋ2 = x2 + u

ẋ3 = x2
1 + x2

2 + 0.005u2

x1 − 8(t− 0.5)2 + 0.5 ≤ 0

x(0) = [0,−1, 0]
T

− 4 ≤ u ≤ 15

t0 = 0, tf = 1

The computational statistics for each generations is shown
in Table II, where l denotes refinement iteration, j de-
notes scale, N denotes subinterval number, and G =∑m

i=0 max{gi, 0}. The initial number j0 and maximum scale
number j are selected as 3 and 6.

During the test, the control variable is first discretized into
8 equidistant intervals. After 4 refinement, the solution is
successively refined. Singular arcs is approximated with higher
solution and flatness is merged, so that a desired approximation
quality can be obtained with less discretization parameters.
Besides, there is no violation of the path constraints because
the G = 0 at the end of each inner penalty generation.

TABLE II: Iterative refinement process of the proposed con-
strained dynamic optimization method

Problem l j N ρ α G J

J&L
(min)

1 3 8
1 2.5e-4 0.0003 0.7445

10 2.5e-5 0 0.7449
100 2.5e-6 0 0.7449

2 4 12 1 2.5e-4 0.00005 0.7389
10 2.5e-5 0 0.7390

3 5 17 1 2.5e-4 0 0.7383
10 2.5e-5 0 0.7383

4 6 26 1 2.5e-4 0 0.7381
10 2.5e-5 0 0.7381

Comparison results is shown in Table III. First, it can be
seen that the optimization results of HGSTA is better than
STA, which denotes hybrid optimization has better local opti-
mization ability. Second, the result from the proposed method
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is in agreement with the results from the previous literatures,
which verifies the validity of the results. Our result 0.7384 is
better than 0.7485 obtained by improved CVP (ICVP) in [17],
and much better than 0.79 obtained by orthogonal collocation
(OC) in [18]. We can use only 26 control subintervals to
obtain a satisfactory solution accuracy. The optimal control
trajectory and state profiles of this problem obtained by
proposed approach is illustrated in Fig. 6. From Fig. 6(b), it
can be seen that x1 is below its upper bound all along, which
denotes the satisfaction of the path state constraint.

TABLE III: Comparison results of Case I

Problem Method Algorithm J

J&L
(min)

Proposed
method

HGSTA 0.7381
STA 0.7386

ICVP [17] - 0.7485
GGM [18] - 0.79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-4

-2

0

2

4

6

8

10

C
on

tr
ol

 tr
aj

ec
to

ry

u(t)

(a) Optimal control trajectory

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time

-1

-0.5

0

0.5

1

1.5

S
ta

te
 V

ar
ia

bl
e

x
1

x
2

Upper bound of x
1

(b) Optimal state profiles

Fig. 6: Optimal results of Case I

B. Case II: Industrial Experiment of CRP

Here, the proposed constrained dynamic optimization
method is applied to solve the DOP (11) arising in CRP, so that
an optimal operation trajectory of zinc powder addition can be
obtained to precipitate copper ions into desirable concentration
range with less zinc consumption. Three-month-long industry

data of actual CRP was collected so as to verify the proposed
approach’s efficiency and robustness.

CRP is a part of the long process industry of zinc hydromet-
allurgy The inlet or outlet copper ion concentration can only
be measured every 2 hours in the actual CRP, which is the key
indicator of the working condition. In addition, according to
the observation, the solution volume V and solution flow rates
Q and q, have no obvious fluctuation in 2 hours. Therefore,
we take 2 hours as the optimization interval, namely t0 = 0
and tf = 2, where V , Q and q remain constant. The dynamic
optimization of CRP can be scheduled for every two hours, or
if there is a significant discrepancy, new dynamic optimization
results will be recomputed based on the current working
conditions and used for the next 2 hours.

A dynamic optimization of 2 hours is carried out and the
working condition in t0 is shown in Table IV. Note that, the
#2 outlet copper ion concentration CCu2+,2 is the key variable
which should be controlled in 0.2-0.4 g/L rigorously. Since
a critical operation is unreliable in industrial practice under
uncertainty, a back-off of 0.05 is highly desirable, such that
CCu2+,2 is subject to 0.25-0.35 g/L in this optimization.

TABLE IV: Operating conditions for CRP (over 2 hours)

Parameter Unit Value

Flow rate of leaching ZnSO4 solution Q m3/h 200
Flow rate of underflow q m3/h 20
Solution volume V m3 100
Inlet copper ion concentration xin

1 g/L 1.7
Initial #1 outlet copper ion concentration x1(t0) g/L 0.7
Initial #2 outlet copper ion concentration x2(t0) g/L 0.32
Zinc powder addition rate, ui kg/h 0-500
Copper removal rate of #1 reactor, RCu2+,1 — 0.53-0.64

The computational statistics for each generations is shown
in Table V, N1 and N2 are the subinterval number of u1 and
u2. The initial number j0 is selected as 2, and the maximum
scale is set to 4 because each zinc powder addition rate should
remain 7 minutes at least. During the test, the control variable
is first discretized into 4 equidistant intervals. Faced with
such a multi-variable dynamic optimization problem, control
variables u1 and u2 are refined iteratively and respectively. The
optimal control trajectory and state profiles of CRP obtained
by proposed method are illustrated in Fig. 7.

Comparison results are shown in Table VI. We can see
that the proposed method with HGSTA optimization has
better local search performance than STA. The total zinc dust
consumption of 2 hours under the optimal control is 463.8870
kg, which is much lower than the average amount of manual
operation 510.37 kg. Thus, there exists a lot of waste of zinc
powder in manual work in the actual industry. In addition,
G = 0 in Table V and Fig. 7 both show that the outlet copper
ion concentration meets the production constraints rigorously,
which indicates the effectiveness of the proposed method.

V. CONCLUSION

In this work, dynamic optimization of CRP is conducted
to find a time-varying zinc addition trajectory such that a
desired outlet copper ion quality is achieved at the least
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TABLE V: Iterative refinement process of the proposed con-
strained dynamic optimization method

Problem l j N1 N2 ρ α G J

CRP
(min)

1 2 4 4

1 2.5e-4 3.0783 429.2226
10 2.5e-5 0.0023 468.2994
100 2.5e-6 0 468.7325

1000 2.5e-7 0 468.7323

2 3 7 7

1 2.5e-4 0.6809 456.7708
10 2.5e-5 0.0009 465.3369
100 2.5e-6 0 465.4784

1000 2.5e-7 0 465.4765

3 4 7 7

1 2.5e-4 4.0543 413.6229
10 2.5e-5 0.0002 463.8549
100 2.5e-6 0 463.8888

1000 2.5e-7 0 463.8870

TABLE VI: Comparison results of Case II

Problem Method Algorithm J

CRP
(min)

Proposed
method

HGSTA 463.8870
STA 465.3258

Manual operation - 510.3721
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Fig. 7: Optimal results of Case II

zinc consumption for a given process time. After process
analysis and modeling, a constrained DOP with one control
constraints and two state constraints is constructed for CRP. A
novel constrained dynamic optimization method is proposed
to solve above DOP. First, the original infinite-dimensional
problem is reduced to a finite-dimensional NLP problem
based on wavelet-based CVP method which can generate an
non-uniform parameterization grid adaptively. Second, a new
smooth penalty function method is used to transform the
constrained NLP problem into a sequence of unconstrained
one. Third, a hybrid optimization strategy named HGSTA,
which combines STA and gradient-based method, is pro-
posed for solving the problem globally and efficiently. The
simulation results show that the proposed method has good
performance in solving constrained DOP, and the optimal
zinc addition trajectory has promising applications in copper
removal process.
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